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ABSTRACT: This research article studies an internally damped linear homogeneous string-like equation. Both ends of the 

string are held fixed, whereas general initial displacement and velocity are considered. From mechanical and physical aspects 

the problem describes a mathematical model of internally damped transversal vibrations of a moving or an elastic drive. From 

Hamilton’s principle, a second order partial differential equation (PDE) for axially moving continuum is formulated. The axial 

speed of string is considered to be positive, constant and small compared to wave velocity, and it is also assumed that the 

introduced internal damping is small. The solutions of equation of motion are based upon two timescales method. By 

application of this method, it will be shown that the internal damping does in fact affect the solution responses, and reduces the 

vibration and noise in the system. It will also be shown that the damping generated in the belt system depends on the mode 

number n, which is obviously expected from mechanical point of view. 

 
Keywords: Conveyor belt, String-like, Axially moving, Internal damping, Two timescales 

 
INTRODUCTION 
Physical and mechanical systems are generally oscillatory 

systems. Axially translating systems, for example, are 

appearing in such category. Axially translating systems have 

received much research attention since last six decades. 

Axially translating systems have been observed in many 

practical and engineering situations. The energy dissipation, 

known as damping, can easily be associated to axially 

translating systems, see Refs. [1-3]. Axially translating 

systems have many engineering applications. For example, 

conveyor belt systems, as given in Refs. [4-6], magnetic 

tapes, pipes conveying fluids, data saving devices, and 

elevator cable systems, see Ref. [5], and all such kind of 

systems are bound to vibrations. 

The research study of axially translating systems with 

constant or time-varying velocity and viscous, internal or 

boundary damping have received much importance in 

manufacture and design. It is common experience that the 

vibration causes severe failures to many mechanical or 

physical structures. In this view, it becomes necessary to 

design systems where unnecessary noise and vibrations can 

be reduced by means of solid procedures. Tacoma Narrows 

bridge has been a good example in education and research 

institutions for a structural collapse. This collapse was due to 

winds at certain speed. Apart from damaging structures, the 

vibration also causes human problems, that is, vibrations 

create anxiety to society. Keeping in view the effects of 

vibrations, it is matter of necessity to formulate methods and 

procedures to decrease vibrations from the physical and 

mechanical systems. 

In many cases, damping devices can be kept through the 

support conditions to control vibrations through boundaries 

as seen in Refs. [4-7]. In Ref. [8] the damping device is 

attached through whole spatial domain of the translating 

system. The reflection and damping properties for a wave 

equation have been studied in Ref. [9], where the authors 

have provided interesting results for a semi-infinite string. 

For different boundary conditions, in Ref. [10], the authors 

have provided detailed analysis for the energetic of the 

elevator cable systems. The authors, in Ref. [11], studied the 

energetics of an axially translating continuum. They studied 

the case for fixed supports for string-like problem and the 

case for simple supports in case of beam-like problem. In 

Ref. [12], authors have provided analysis of dampers 

connected at middle of string and beam. But the position of 

the damper plays significant role. If the damper is introduced 

at wrong spatial position it may increase energy of motion 

and may destabilize the system, for details see Ref. [13]. 

In this article, an internally damped string-like equation is 

considered. The article has been organized in following way. 

In Section 2 the governing equations of motions are 

formulated systematically from the physical principles. In 

Section 3 the analytic approximations of solutions of an 

initial boundary value problem are obtained by using multiple 

timescales method. Section 4 discusses results obtained in 

Section 4, and Section 5 represents the concluding remarks 

and future research directions.  

THE GOVERNING EQUATIONS 
This section is based on equations of motion related to axially 

translating elastic system with suitable initial and the 

boundary conditions will be formulated by the application of 

the Hamilton's principle, see for instance, Ref. [8]. Consider a 

conveyor belt system which moves with an axial velocity  ̅ 

between a pair of pulleys that are located at a distance L 

meters apart. The transversal vibrations of the conveyor belt 

system can be modeled as a tensioned string-like equation. 

The mathematical model of a traveling tensioned string under 

internal damping is based on the following assumptions: 

- The variable x is the spatial coordinate, the variable t is the 

time, 

- u(x,t) models the displacement field in vertical direction 

from equilibrium position, 

- 
  

  
          ̅        is the material velocity, where 

        is the local velocity at a fixed position at time t and 

 ̅        is transversal velocity component due to axial 

velocity  ̅ with slope         at a fixed time t, 

-         , is component of tension in vertical direction, 

- The mass of string per unit length, ρ, is constant, 

- The internal damping coefficient  ̅ is assumed to be 

constant, 
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- The transversal vibrations are assumed to be small, and 

- The effects of the gravity and the other forces are neglected. 

To be more specific about the vertical component of the 

tension         , it is possible to include the material 

damping in the system. It is evident that during the vibration 

of the string in the vertical direction particles are constantly 

rubbing each other as the string vibrates. This process of 

rubbing of the particles converts some kinetic energy into 

heat and so decreases the tension in the string and damp out 

the vibrations. As the vibrations become faster, the more heat 

is generated in the system. Thus, the tension in the string, 

        , does not only depend on the relative 

displacements        , but also on the total time rate of 

change of these relative displacements, 
 

  
         

 ̅   , since the string moves with velocity  ̅ in positive x 

direction. Thus, the total vertical component of the tension 

becomes                   ̅           
 ̅          , where T is the constant horizontal tension in the 

string and where  ̅ is the coefficient of the material damping 

which is assumed to be constant. Thus, the string-like 

equation is given as follows,  

  (      ̅     ̇̅    ̅    )      

  ̅       ̅          
          

(1) 

with the fixed boundary conditions, 

                        (2) 

and the general initial conditions, 

                                 (3) 

The terms in the bracket into Eq. (1) represent acceleration 

quantities. The equations contained in (1)-(3) can be put into 

a non-dimensional form by using following dimensionless 

quantities:    
 

 
    

 

 
    

  

 
    

 ̅

 
    

 ̅

   
    

 

 
    

 

 
, where   √    is the wave velocity. Thus, the 

equations (1)-(3) into non-dimensional form become: 

             ̇       
       

                    

(4) 

 

The boundary conditions are given as, 

                        (5) 

The initial conditions are given as, 

                               (6) 

 

THE ANALYTICAL APPROXIMATION 
This section is devoted to construction of an approximation 

of the solutions to the initial-boundary value problem (4)-(6) 

by using a multiple timescales perturbation method. For a 

complete overview of this method, see Refs. [14,15,16]. 

Following two assumptions are made to utilize a two 

timescales perturbation method. The axial velocity  ̅ of the 

string is assumed to be small compared to wave velocity c 

and that the damping coefficient  ̅ is small compared to ρcL. 

Based on these two assumptions, it is reasonable to write 

   
 

 

̅
     , and    

 ̅

   
     , that is,    

              The parameter ε is a dimensionless small 

parameter  as described by      . Utilizing these 

assumptions in Eqs. (4)-(6), it follows that 

                               

           
(7) 

 

                            (8) 

 

                                       (9) 

According to a two timescales method a function          is 

supposed to be a function of spatial variable x, the fast 

timescale t=t and, the slow timescale τ=εt. For this reason, 

                      (10) 

By using Eq. (10), the time derivatives can be transformed as 

follows, 

            
                      

(11) 

By substituting Eqs. (10)-(11) into Eqs. (7)-(9), the problem 

in y up to O(ε) is given as follows, 

                               
                          

                           
                     

(12) 

Usually it is assumed that not only the function          can 

be approximated by the asymptotic expansion, but also the 

function                     can be approximated in the 

powers of ε in the asymptotic expansion as follows, 

                                      (13) 

and that all the   ’s for           , are found in such a 

way that no unbounded (secular) terms arise. It is also 

assumed that the unknown functions    are     . Now, by 

substituting Eq. (13) and its subsequent derivatives into Eq. 

(12), then by equating the powers of          , and 

neglecting the    and the higher powers of  , the     -

problem is followed as given by, 

     
     

    

                        
                  

              

(14) 

The     -problem is given as, 

     
     

       
       

       
  

                       
                

            
         

(15) 

It can be observed that the     -problem has solution only 

for the positive eigenvalues,            , for details the 

reader is referred to Ref. [17,18]. Thus, the solution of     -

problem is given as follows, 

 
          ∑               

 

   

                          

(16) 

where            are undetermined functions of slow 

variable τ, often known as Fourier coefficients and, they can 

be obtained from the     -problem. The values of the 
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constants                  can easily be obtained by the 

initial values as given in Eq. (14) and by using the 

orthogonality properties of the eigenfunctions. The 

eigenfunctions             satisfy the following 

orthogonality properties, as given by  

 
∫                   

 

 

           

                                                   
 

 
          

(17) 

Thus, by using the initial values as given in Eq. (14) and the 

orthogonality properties of the eigenfunctions as given in Eq. 

(17),             are given as 

 
        ∫     

 

 

            
(18) 

 
          ∫     

 

 

             
(19) 

Now, the eigenfunction expansion method is introduced in 

solving the     -problem. Following form for the solution 

          is assumed,  

 
          ∑            

 

   

  
(20) 

where         are the unknown functions of t and τ and are 

called generalized Fourier coefficients, and where       
         are the eigenfunctions. Thus, by substitution of Eq. 

(20) in the     -equation, it yields 

 
∑(    

                  )     

 

   

       
       

       
  

(21) 

Now, by substitution of the solution           from Eq. (16) 

into Eq. (21), it follows that 

 
∑(    

                  )      

 

   

   ∑    
     

 

   

     

   ∑   
     

 

   

  
    

  ∑   
     

 

   

  
       

 

(22) 

where         is given by, 

                                        (23) 

By multiplying both sides of Eq. (22) with      , then by 

integrating the so-obtained equation from            

with application of the orthogonality property of 

eigenfunctions, it follows that 

     
                  

       
      

   

          

   ∑    
   

 

       

  

(24) 

where     are constants depending on the indices m and n, 

and their values are given as follows 

 
    ∫   

            
 

 

 
(25) 

Note that       for all integers m. Thus, by using this 

value of    , changing index from m to n and making use of 

Eq. (23) into Eq. (24), it readily follows that 

     
        

   (    
                 )         

   (    
                 )         

 ∑        
 

       

               

                    

(26) 

On right hand side of Eq. (26) first two terms are the 

solutions of the homogeneous equation. Such terms will give 

rise to secular (unbounded) terms in the solution        . 

Since we have already assumed that the functions 

                      are bounded on timescale of       . 

Thus, to have secular free behavior, the following solvability 

conditions are imposed in Eq. (26), that is, 

 
   

     
      

 
          

   
     

      

 
          

(27) 

The solutions to above system of two uncoupled ordinary 

differential equations in (27) are given as follows 

 
              

 
      

 
   

              
 
      

 
   

(28) 

where                  are given in Eqs. (18) and (19), 

respectively. Thus, by using Eq. (28) into Eq. (16), the 

complete solution to     -problem is given as follows, 

 
          ∑  

      
 

                

 

   

                          

(29) 

Now, by substituting      into the expression,  
      

 
 , 

and then dividing the so-obtained expression by t, the 

damping parameter    for all the oscillation modes can be 

approximated by, 

 
     

      

 
  

(30) 

Thus, from Eq. (26) with Eq. (27), it follows that 
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 ∑        
 

       

               

                     

(31) 

It can be seen that the Eq. (31) is a second order 

nonhomogeneous ordinary differential equation in        , 

which yields a homogeneous solution to a homogeneous part 

of equation and a particular integral to a nonhomogeneous 

part of equation. Thus, the total solution to Eq. (31) is given 

as 

        
                              

 ∑
          

           

 

       

               

                  

(32) 

where                  are yet undetermined functions of a 

slow variable τ, these functions can be obtained from the 

     -problem. Thus, the Eq. (20) with Eq. (32) can be 

expressed as 

          

 ∑ {                             

 

   

 ∑
          

           

 

       

               

                }            

(33) 

Now, by using the inner product (17) and the initial values in 

Eq. (15) with Eq. (16) into Eq. (33), it follows that 

                 are given by 

       

  ∑
          

           
      

 

       

  

(34) 

         

 ∑
          

           
      

 

       

    
      

(35) 

It can be observed that the solution           still contains 

infinitely many undetermined functions             
                These unknown functions will be used to 

prevent the unbounded terms in solution          . At this 

time, it is not reasonable to construct the higher order 

calculations. This is a reason, we can take        
                        . So far, a formal asymptotic 

expansion                               has been 

constructed for       , where                         are 

continuously differentiable two times with respect to t, two 

times with respect to x, and infinitely many times with 

respect to τ. 

RESULTS AND DISCUSSION 

The aim of this section is to comment, interpret and explain 

the results obtained in previous section. Using the complete 

analytical solution of the     -problem, the influence of 

small parameter   and the damping parameter on the axially 

translating system will be discussed in detail. By using the 

    - and the     -solutions, it turns out 

       ∑  
      

 
                 

 

   

                          

where                  are given by Eqs. (18) and (19). 

From physical view point, all terms can be explained in 

above solution to the IBVP (4)-(6). The terms 

                              are the oscillation terms 

obtained from a time-dependent part of the equation. These 

terms oscillate with frequencies n for    , where sine 

terms have maximum oscillation amplitudes An0(0) and 

cosine terms have maximum oscillation amplitudes Bn0(0). 

The term   
      

 
  

 is arisen due to internal damping in the 

system. This term indicates that as the time parameter t will 

increase for fixed values of   and   the size of the 

oscillation amplitudes An0(0) and Bn0(0) will start to decrease 

and it also shown that as mode number n starts to increase the 

oscillation amplitudes tend to decrease for fixed  ,  , and t. 

The last term  xnsin  is the solution of the space-

dependent part which describes the shapes of the oscillation 

curves along x-axis for fixed values of the time parameter t. 

CONCLUSIONS AND FUTURE WORK 
In this research article, an initial-boundary value problem 

(IBVP) for the internally damped axially translating continua 

has been studied. Solving the IBVP a method of two 

timescales has successfully been applied to obtain the 

analytic solutions of a proposed mathematical model. This 

mathematical model is based upon the transversal vibrations 

of a conveyor belt system. It has been shown, in this paper, 

that all oscillation modes are damped for the system. It has 

also been shown that damping rates are, in fact, depending on 

mode numbers n. From mechanical point of view, this 

response is reasonable because as oscillations increase the 

more heat is generated in the system which internally damps 

the vibratory energy of motion. As modes increase the 

oscillation amplitudes decrease and the belt system gets 

stable. This research problem can further be extended to 

internal damping of an axially translating beam with constant 

and time-dependent velocities. 
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